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Turbulent temperature and velocity fluctuations in air were measured at a 
height of 4 m over a tidal mud flat. Particular attention was focused on the high- 
wavenumber, small-scale region of the spectra of these fluctuations. The measure- 
ments of the velocity fluctuations were made with a constant-temperature 
hot-wire anemometer; the hot wire consisted of a platinum wire 5,um in 
diameter and approximately 1 mm in length. Temperature fluctuations were 
measured with a platinum resistance thermometer which consisted of a platinum 
wire 0.25pm in diameter and about 0.30mm in length. 

The velocity spectra results agree well with the classical results of Grant, 
Stewart & Moilliet (1962) and Pond, Stewart & Burling (1963). In  addition, they 
extend the velocity spectrum in air to slightly higher wavenumbers. The one- 
dimensional Kolmogorov constant K’ estimated from these data was 0.51. 

The temperature spectra clearly show the shape of the one-dimensional tem- 
perature spectrum in air beyond the - Q region. In air temperature and velocity 
spectra are very similar. The value of the scalar constant Ki,  which appears in the 
scalar - 4  law, computed from these data was 0.81. Direct measurement was 
made of all parameters that enter into the calculation of it. 

1. Introduction 
During the past ten years attempts have been made to measure the full one- 

dimensional spectrum of temperature fluctuations in the atmospheric boundary 
layer. The distribution of temperature in a turbulent field has a direct bearing on 
a number of problems in and related to geophysics, since resulting inhomogenei- 
ties influence the scattering of sound waves and electromagnetic radiation. The 
important parameter in such scattering problems is the refractive index, the 
variation of which is often related to  the small-scale structure of the temperature 
distribution. For waves in the optical and infra-red regions, fluctuations in the 
refractive index are determined primarily by density fluctuations which in turn 
can be related to temperature fluctuations. In  the case of laser propagation, even 
the smallest scales of these fluctuations can be significant. Further application 
of a knowledge of the small-scale distribution of temperature is found in the 
design of such engineering systems as chemical reactors, the analysis of the mixing 
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of two fluids of equal density, and heat transfer. The subject of heat transfer 
is especially significant to studies in oceanography and meteorology. Besides 
these applications, high-wavenumber spectra are of great interest in their own 
right, since they lead to improved understanding of turbulence in general both 
as a source of new ideas and as a testing field for theory. 

2. Theoretical relations 
2.1. Velocity 

Theoretical discussions usually use the three-dimensional energy (velocity) 
spectral density function E(k)  (Batchelor 1953, p. 36), since this function seems 
to come closest to the physical concept of the energy per unit mass associated 
with a particular scale of motion. It may be defined so that 

where the wavenumber k is the amplitude of the vector k, and ul, u2, and u3 are 
Cartesian turbulent velocity components. The bar denotes an ensemble average 
which is equivalent to a space or time average under certain assumptions (Lum- 
ley & Panofsky 1964, p. 6 ff.) which are satisfied provided the turbulence field is 
reasonably ‘stationary ’. In  isotropic turbulence these velocities are the total 
velocities, since any mean motion may be removed by a simple co-ordinate 
transformation which does not change the statistical properties of the turbulence. 
In  anistropic turbulence these velocities are the deviations from the mean. 
Ensemble averages are used, at least in principle, since they allow the inter- 
change of averaging and differentiation. 

Because of the difficulties of measuring E(k)  directly, experimentally, the one- 
dimensional spectrum $(k)  is measured. It is defined so that 

where k, in this integral represents the component of k in the X ,  direction. For 
isotropic turbulence $(kl) is related to E(k)  by (Hinze 1959, p. 171) 

Also, in isotropic turbulence the average rate of energy dissipation per unit mass 
is given by (Hinze 1959) 

e = 2v/;k2E(k) dk = 15vJomk;$(kl) dk,  = 15v (s)2, (4) 

where v is kinematic viscosity, k2E(k) and k;$(E,) are referred to as dissipation 
spectra and describe the distribution in wavenumber space of the average rate 
of decay of turbulent energy to heat. From (d), it is evident that k!$(kl)  is the 
spectrum of 8ul/axl. Relations (4) will be valid in turbulence which is only locally 
isotropic, provided that the major contributions to the integrals are from wave- 
numbers which are locally isotropic. 
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An important idea developed in modern turbulence theory is that of the energy 
cascade: large-scale motions are being constantly degraded into smaller and 
smaller scales. Kolmogorov (1  941) applied the idea of the energy cascade seriously 
and developed a theory that should be applicable to all fields of turbulence 
provided the Reynolds number (Re) is high enough (i.e. the ratio of inertial to 
viscous forces is large). A high Re guarantees that the wavenumber separation 
between the energy-containing region of the spectrum and the viscous dissipation 
region is large. The small-scale turbulence has lost its identity with the large-scale 
generating forces and eventually becomes isotropic (Taylor 1938). 

The first Kolmogorov hypothesis states that for sufficiently high Re, statistical 
properties of locally isotropic scales are uniquely determined by B and v[cmz s-11. 
Dimensional analysis then yields 

544 = ( e ~ S ) w k l / k s )  (5) 

ka,#J(kl) = k W ) )  ( ~ l / ~ S I 2 W l / ~ S )  (6) 

for the form of the one-dimensional energy spectrum and 

for the form of the energy dissipation spectrum. In these relations k8( = ( 4 v 3 ) i )  
is the Kolmogorov wavenumber, its reciprocal being referred to as the Kolmo- 
gorov microscale. Provided Re is high enough, F(kl/k8) should be a universal func- 
tion valid for all fields of turbulence. 

Universal similarity of velocity spectra for water and air for grid and oceanic 
turbulence was first demonstrated by Gibson (1962) and Gibson & Schwarz 
(1963). They used wind tunnel data from Stewart & Townsend (mil), their own 
water tunnel data, and compared the results with the independent, simultaneous 
normalized spectra which Grant et al. (1962) had obtained from measure- 
ments in a tidal channel. The results of Pond et al. (1963) from atmospheric 
measurements, offered additional striking support. 

The second Kolmogorov hypothesis states that if Re is sufficiently large, there 
should exist a range of scales which are isotropic and in a local steady state but 
for which viscosity is not important. The statistical properties of the turbulence 
are determined by e alone. Dimensional analysis then leads to the now well- 
known law of local isotropy, 

where K' is a universal constant. From equation (3) it follows that, if the one- 
dimensional spectrum has a negative power law form, then the three-dimensional 
spectrum has the same power law behaviour. In  the inertial range then, from (3) 

and (7)7 

#(kl) = K'dk$, (7) 

E ( k )  = Kdk-8, K = MK' 18 . (8) 

The constants K and K' also are referred to as a and a,, respectively in other 
literature. The results of Grant et al. and of Pond et al. also confirm (7), as their 
data exhibit a long region where the slope is - on a log-log plot. In fact their 
- $ region extended to anomalously low wavenumbers, where the turbulence 
could not possibly be isotropic. These and subsequent measurements (e.g. Weiler 
& Burling 1967) have led to a re-evaluation of ideas on local isotropy. It is interest- 
ing to note that, in the early 19607s, turbulence experiments tended to confirm 
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Kolmogorov’s classical similarity theory. At the same time Kolmogorov (1962) 
revised his theory to take into account the variability of E ,  an omission which 
had been pointed out by Landau shortly after the development of the original 
similarity theories. Since 1962, and especially recently (Gibson, Stegen & Wil- 
liams 1970; Stewart, Wilson & Burling 1970; Wyngaard & Tennekes 1970; 
Sheih, Tennekes & Lumley 1971), evidence has accumulated favouring Kol- 
mogorov’s 1962 refinement. In  particular, the refined theory and current evidence 
suggest that the velocity spectral shape is not universal, but depends on turbu- 
lence Reynolds number. The previous discussion should be viewed in light of 
these recent developments. 

According to the original Kolmogorov ideas, the constant K’ of equation (7) 
should be a universal one, independent of the particular fluid or of the mean flow 
and the spectrum at low wavenumbers. Pond et al. (1966) summarized values of 
K’ for four different flow fields (atmosphere (Pond), laboratory air jet (M.M. 
Gibson 1963), ocean (Grant et al. 1962) and water tunnel (Gibson & Schwarz 
1963)). The mean value of K’ was 0.48. Since the Pond et al. (1966) paper, other 
experimental results have been published. Kistler & Vrebalovich (1966) reported 
values of K’ of 0-65 in very high Reynolds number grid turbulence. Shieh et al. 
(1971) obtained a value of 0.65 in atmospheric measurements at  high Reynolds 
number and Gibson et al. (1970) obtained a value of 0.69 from atmospheric 
measurements over the Atlantic Ocean. In  addition, two theoretical values are 
available. Kraichnan (1968) derived K = 0.58 using the abridged Lagrangian 
history direct interaction approximation, and Pao (1965) obtained a value of 
0.55 by fitting his spectral cut-off function to inertial subrange measurements 
with K as the adjustable parameter. To this list of K‘ values may be added the 
values of 0.53 obtained by Stewart et al. (1970) from measurements of the skew- 
ness of velocity derivatives, 0.56 obtained by Nasmyth (1970) from a new uni- 
versal curve based on a very clean oceanic turbulence data, and 0-57 obtained 
by Paquin & Pond (1971) from second- and third-order structure functions com- 
puted from velocity fluctuations in the wind over the ocean. 

According to the new Kolmogorov ideas, K‘ may not be a universal constant 
but a function of the macrostructure of the flow. There presently exists the choice 
of a K‘ which is Reynolds number dependent (Wyngaard & Tennekes 1970) or a 
constant K‘ with a steeper slope in the inertial subrange (Yaglom 1966). Regard- 
less, the Re dependence is weak and difficult to detect experimentally. 

These recent results cast doubt on the idea that the value of K’ is exactly 0.48. 
This paper adds further data on K ,  which tend to support the original estimates. 

2.2. Temperature 

Kolmogorov’s ideas, both old and new, may be applied to turbulent fluctuations 
of passive scalars such as temperature fluctuations in the atmosphere and oceans, 
salt concentration fluctuations in the oceans or dye concentration fluctuations 
in laboratory experiments. A passive scalar is any quantity (including contami- 
nants) that modifies and/or can be transported in a fluid but which does not in- 
troduce buoyancy effects. A scalar which did introduce buoyant type forces 
would be considered to be active. ‘Temperature’ is active a t  large generating 
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scales but not at the small scales discussed here. The symbol ‘8’ will be used to 
indicate ‘intensity’ of a scalar, or as a subscript to indicate quantities which 
refer to scalar quantities. 

If 8 is the deviation of a scalar property from its ‘ensemble ’ mean, the spectral 
functions for its fluctuations are defined so that 

where Ee(k) is the three-dimensional spectrum, and $&k1) is the one-dimensional 
spectrum. These spectra are related in the isotropic case (Hinze 1959, p. 226) by 

The mean rate of scalar dissipation €0 is determined by 

provided that the turbulence is isotropic at least in the range of wavenumbers 
which provide the dominant contribution to the integrals. K is the diffusivity of the 
scalar property. k2E,(k) and k: $@(hi) are scalar dissipation spectra and describe 
the distribution with wavenumber of the rate of decay of scalar fluctuations. 
The second expression in (12) merits further discussion. An alternative expression 
for ee uses a 3~ in place of 6~ in front of the integral. The difference originates in 
the form of the scalar dissipation budget used. For the budget of @ , 6 ~  is needed, 
whereas in the budget of @, 3K is needed. A discussion of this problem is pre- 
sented by Paquin & Pond (1971, p. 267). 

Gibson (1968b) introduced a set of similarity hypotheses for locally isotropic 
scalar fields. Since his notation is slightly different from that used here, the 
hypotheses will be reworded. 

(i) At sufficiently high Re the statistical properties of the scalar fluctuations 
are determined by the mean rate of strain y [  = (v/s)&], €6 and K.  Dimensional 
analysis then leads to 

for the one-dimensional scalar spectrum and 

k!$e(kJ = k!€e€-%v’% (ki/kA2H(a, k i / k )  (14) 

for the scalar dissipation spectrum. In  these relations a is the Prandtl number 
(G = v / K ) ,  the ratio of kinematic viscosity to molecular diffusivity. 

(ii) If there exists a range of wavenumbers which is isotropic, but in which 
neither viscosity nor diffusivity is important, then the only determining para- 
meters are €8 and E .  Dimensional arguments then lead to 

$e(ki) = KL.6 E-* ki+, (15) 

where Ka is a universal constant. 
These hypotheses are covered by Gibson’s similarity hypotheses (1)  ( 1968 b ) ,  

p. 2318) for scalar fields of arbitrary diffusivity. His equation (32) is equivalent 
to (13) and his equation (33) is the same as (15). 
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Equations (15) and (17) were first tested for €0, e, k, and CT dependence by Gib- 
son & Schwarz (1963) for the cases of temperature and salt concentration fluc- 
tuations in water, in a water tunnel. Gurvich & Kravchenko (1962) and Fond 
(1965) verified the k, dependence of (15) for temperature fluctuations in air. 

From (1 1) it  follows that, if the one-dimensional scalar spectrum has a negative 
power law form, then the three-dimensional spectrum has the same power law 
behaviour. For the isotropic range of wavenumbers, from (1 1) and (15), 

Ee(k) = Keeedk-g, KO = $Ki. (16) 

Whereas the -Q form of the temperature fluctuation spectrum has been 
demonstrated, the form at scales where viscosity and conductivity are important 
is not clear. Theoretical studies have enjoyed only partial success. Obukhov 
(1949) and Corrsin (1951) estimated the drop from the -Q power law to occur 
at  k, = ( 4 ~ ~ ) ) .  Batchelor (1959) argued that this cut-off wavenumber occurs 
only when (r < 1. For CT 9 1, Batchelor suggested the existence of a viscous- 
convective subrange [ ( E / V K ~ ) ~  < k < (e /w2)+]  and a viscous-diffusive subrange 
[ ( e / v ~ ~ ) i  < k]. He proposed a uniform straining model for these ranges and 
obtained the spectrum function 

Ee(k) = - Bgy-lk-lexp [ ~ k ' / y ]  (k < ks), (17) 

where y = - (8) (e/v) 8. For the case of strongly diffusive scalars (CT $ l), Batchelor, 
Howells & Townsend (1959) proposed the existence of an inertial-diffusive sub- 
range and obtained 

Eo(k) E (Q) €o&/C3k'~'  (kc < k $ ks). (18) 

Gibson (1968 a)  stressed the importance of the local rate of strain to the develop- 
ment of the largest wavenumber perturbations of the scalar field, and in the com- 
panion paper mentioned already (Gibson 1968 b )  developed spectral predictions 
appropriate to various ranges of scale and Prandtl numbers. For the case of 
small CT he obtained a k-3 dependence for the scalar spectrum in the range 

Some experimental verification of (17) has been obtained by Grant et al. 
(1968), who measured temperature and velocity fluctuations in the ocean. 
Experimental work in low CT fluids (Rust & Sesonke 1966; Granatstein, Buchs- 
baum & Bugnolo 1966) have yielded results that do not unambiguously support a 
specific theory, although it is interesting to note that Rust & Sesonke put a 
- 3 line through their spectra without any knowledge of either the Batchelor 
et al. (1959) or the Gibson (19683) theory. For the intermediate case (i.e. CT 
not large or small) no clear definitive theory is available, though the problem 
has been considered by Howells (1960), Pao (i965), Kraichnan (i968) and Gibson 
(1968a, b) .  For unity Prandtl number fluids, Van Atta (1971) has derived inertial 
subrange expressions which take into aceount the fluctuations in dissipation 
rates of scalar and velocity fields. He obtained a wavenumber dependence in the 
inertial subrange which varies about the traditional -4  (or - 1.67) power law 
form, namely - 1.56 to - 1.72. The intermediate Prandtl number case is ex- 
tremely important, since it probably applies to air and other gases (for which 

lc, < k < ks. 
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N 1). The modifier ‘probably’ is used, because it is not at  all clear whether a 
Prandtl number of unity should be considered large or small or neither. 

The constant Ki of equation (15), according to original Kolmogorov ideas, 
is expected to be universal. Since scalar spectra at  high wavenumbers are not 
nearly as well documented as velocity spectra, the value of Ki is in some doubt, 
doubt that has been compounded by definitions of spectra and of (12) which differ 
by a factor of two. The first measurement of the constant was made by Gibson 
& Schwarz (1963), who obtained Ki  = 0-35. Since then a variety of values has 
been reported. Experimentally these range from 0.31 (Grant et aZ. 1968) to 
2 (Gurvich & Zubkovsky 1966) and theoretically from 0.208 (Kraichnan 1968) to 
0.9 (Gibson 196871). This paper presents additional values of Ki for the case of 
temperature fluctuations in air. 

3. Experiment 
The measurements were made at Boundary Bay, British Columbia (figure 1) .  

All instruments were supported from a portable mast at  a height of 4m. The 
signals from the sensors were carried by cables to a panel truck which served as the 
housing for the recording equipment. The truck was 30m downwind from the 
mast. 

Turbulent velocity was measured with a constant-temperature hot-wire 
anemometer system (DISA Model 55D05). The unit was battery operated and 
used in a 1 : 1 bridge ratio mode which requires a compensating cable in the balance 
arm whose impedance matches that of the probe cable. The hot-wire probe 
consisted of a platinum wire 5pm in diameter and 1.Omm in length. It was 
mounted approximately 5 cm above the temperature sensor. 

Mean wind speed was monitored by a cup anemometer (Thornthwaite 
Associates). 

The sensor of temperature fluctuations was a resistance thermometer consisting 
of a platinum wire 0.25pm (0.00001 in.) in diameter and about 0-30mm in 
length (figure 2,  plate 1). Direct measurements of the time constant of the wire 
indicated that its frequency response was flat to beyond 2 kHz. Calculations 
based on empirical formulae supported this result. Assuming Taylor’s hypothesis 
in the form k = 2nf/ U and U = 600 cm-l s as the maximum wind speed to be en- 
countered (for this experiment), f = I kHz as the highest frequency of interest, 
then the maximum wavenumber of interest is k 21 10 cm-I. Since the wavenum- 
ber associated with the length of the wire is in excess of 30 cm-l, then the spatial 
resolution of this wire is more than adequate. The dimensions of the wire also 
ensured that end effects (due to a length to diameter ratio of approximately 
1200) and other effects would be negligible. 

The electronic system used to convert resistance changes of the wire to  usable 
voltage fluctuations consisted of an 80 kHz multivibrator, bridge, bridge ampli- 
fier, synchronous detector and d.c. amplifier (figure 3). Its frequency response is 
flat from d.c. to approximately 10 kHz. Further circuit details can be found else- 
where (Boston 1970). In  order to  be certain that no significant velocity dependence 
appeared in the temperature signal, the 0.25pm diameter wire was operated with 
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( b  ) 

FIGURE 2. Microscopc photographs of platinurn core used as the temperature fluctuation 
smsor (by C. Woodhouse). (a)  0.25 ,urn platinum wire core oxtending from silver jacket 
soldered to prongs. (b)  Magnification of (a)  to show core section (distance between silvrr- 
coated ends approximately 0.4 mm). 

BOSTON AND LZURLING (Faciacing p. 480) 
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FIGURE 3. Block diagram of temperature fluctuation measurement system. 

a current of 50microamps. A change in wind speed of, for example, 4ms-1 to 
5 m s-l would be registered as a temperature change of only 0.005 "C. 

The signals from the platinum resistance thermometer, hot-wire and cup 
anemometer were recorded on separate f.m. (frequency modulated) channels of a 
magnetic tape recorder (Sangamo Model 3562) run at  60 in.-l s (high frequency 
cut-off 20 kHz). The recording system is outlined in figure 4. The signal from the 
platinum resistance thermometer electronics following the low pass (1.p.) filter 
and the signal from the hot-wire anemometer electronics (55D05) were treated 
similarly. Each was recorded in two different ways chosen to optimize the in- 
compatible requirements of noise performance and frequency response. These 
signals were recorded both unaltered (1.f. gain) and differentiated. The purpose 
of the differentiation circuit was to improve the signal-to-noise ratio a t  high 
frequencies. L.f. gain provided gain not only for the direct signal but also for the 
signal prior to differentiation. The high-frequency gain control (h.f. gain) 
determined the frequency at  which there was unity gain in the differentiating 
circuit. H.f. gain was adjusted to provide optimum gain (prewhitening) of the 
frequencies of interest. 

Data from five separate tapes were analysed. Sections were chosen from each 
of the tapes on the basis of stationarity, reasonably uniform levels of turbulence, 

3 1  FLM 55 
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FIGURE 4. Block didagram of recording system (including a platinum resistance 
thermometer (PRT)). 

mean winds and temperature. Section details are given in table 1. These data 
were collected on 8 August 1969 between noon and 8.00p.m. Pacific Daylight 
time. The first run made appears at  the top of table 1 and the last at  the bottom. 
Nineteen cases of velocity spectra and sixteen cases of temperature spectra 
were examined. 

The velocity derivative signal, velocity signal and temperature signal were 
digitized at  a sampling rateof 2 kHz after 1.p. filtering (filter cut-off 48 db octave-l) 
at 1 kHz. The temperature derivative signal was digitized a t  6 kHz after 1.p. 
filtering at  2 kHz. The digitized data were processed on an IBM 360167 computer 
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Record start Mean wind 
Tape no. time PDTt Section (mb) 
202 (2) 1330 A 3.43 

B2 3.39 
- D 3.50 

F 3.42 

203 (1) 1427 A 3.35 
B 3.08 
C 3.00 
D 2.90 

209 (3) 1600 A 3.86 
B 4.03 
C 3.70 
D 3.68 

RCA l(1) 1629 A 4.30 
B 4.20 
E 3.50 
F 2.90 

RCA 3(1) 1945 A 3.65 
B 3-93 
C 4.50 

2 = 4 m, v = kinematic viscosity. 
t Pacific Daylight Time. 
1 Reynolds number = Re = U Z / v .  

TABLE 1. Listing of sections analysed 

Reynolds 
number3 
R e x  l@ 

0.9 
0.9 
1 -0 
0.9 

0.9 
0.9 
0.8 
0.8 
1 .1  
1 .1  
1.0 
1 .o 
1.2 
1.2 
1 -0 
0.8 

1 *o 
1.1 
1.2 

Length of 
record (s) 

35 
30 
60 
23 

60 
60 
60 
60 

60 
60 
60 
60 

60 
60 
60 
60 
60 
60 
60 

at the University of British Columbia. Typical spectra showing observed 80 yo 
confidence levels as vertical bars are shown in figure 5. The horizontal bars indicate 
the bandwidth over which the spectral value was estimated. Frequency spectra 
were converted to wavenumber spectra through direct application of Taylor‘s 
hypothesis (k = 2nflU). 

4. Results 
4.1. Velocity 

Velocity spectra were normalized according to (5) and the five groups (figure 6) 
compared with previous results. The ‘universal ’ curve for velocity spectra de- 
termined by Grant et al. (1962) from oceanic turbulence is found to  fit very 
closely to. these groups of spectra. The group 202 (2) falls below the Grant et al. 
curve a t  high wavenumbers. Nasmyth (1970) has produced a new approxima- 
tion to Kolmogorov’s universal function based on very ‘clean’ spectra of oceanic 
turbulence. The new curve lies very near the old in the low and mid-range of 
wavenumbers, has a slightly sharper ‘knee’ and then falls below the old curve. 
His spectra were compared with the 202 (2) spectra and the Grant et al. spectra 
(figure 7 ) .  Since no ‘noise’ was subtracted from the 202 (2) spectra (or any of the 
other velocity spectra) and the signal-to-noise ratio was the best of the data 

31-2 
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FIGURE 5. (u)-(d). Typical spectra illustrating 80 yo confidence limits 
(vertical bars) and bandwidths (horizontal bars). 

presented here, agreement over the viscous dissipation region can be taken as 
partial support for the universal curve proposed by Nasmyth. Those spectra 
that were not as ‘clean’ agree better with the old curve of Grant et al. (1962). 

Energy dissipation spectra were normalized according to (6) and plotted in 
linear form (figure 8). These results compare very well with those of Pond (1965) 
and Grant et al. (1962). Dissipation spectrum 202 (2) A was compared with the 
dissipation spectrum presented by Gibson et al. (1970). The level of 202 (2) A 
is lower in the ‘inertial’ range but does not fall as quickly in the dissipation region. 
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FIGURE 6. Normalized velocity spectra. 

Since these data agree well with the Nasmyth ' universal ' curve, then the Gibson 
et al. curve appears to fall at high wavenumbers faster than the present authors 
would expect. 

The value of K was estimated from (7) and the one-dimensional integral in 
(4). Based on 17 estimates (table 2) a value of 0.51 with a standard error of the 
mean of 0-02 was obtained. This agrees well with most previous values (§2.1), 
and it is not far from the recent values of 0.56 obtained by Nasmyth (1970) and 
0.53 obtained by Stewart et al. (1970). 

4.2. Temperature 

Temperature spectra were normalized according to (13). These spectra (figure 9) 
match very well in the dissipation region where the normalization procedure 
requires the closest fit. This lends some confidence in the techniques used to 
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FIGURE 7. Comparison of 202 (2) normalized velocity spectra with (I ) Nasmyth 
(1970) spectra and (+) Grant et al. (1962) spectra. 

acquire and analyse these data. The spectra demonstrate clearly the shape of 
the one-dimensional temperature spectrum in air beyond the ‘ - 8 ’ region. There 
is no ‘ - 1 ’ region, which suggests that large cr theory does not apply to tempera- 
ture fluctuations in air. 

The universal temperature and velocity spectra are very similar (figure 10). 
The temperature spectra tends to be slightly higher than, and displaced slightly 
to the right of, the velocity spectra. The curves defining the ‘ dissipation ’ regions 
appear to parallel each other. 

There are few previous measurements with which to compare these data. The 
results of, for example, Gibson & Schwarz (1963) compare favourably in the 
‘-%’ region but the agreement departs at high wavenumber due to Prandtl 
number effects. The Prandtl numbers of the fluids they worked with were 7 and 
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FIGURE 8. Normalized energy dissipation spectra. Dashed line is 
envelope of points from Grant et al. (1962). 

Tape no. 

202 (2) 

203 (1) 

209 (3) 

RCA 1 (1) 

RCA 3 (1) 

Section 

A 
B2 
D 
F 
A 
B 
C 
D 
A 
B 
C 
D 
A 
B 
E 
F 
A 
B 
C 

E €0 

64 0.12 - 
69 0.058 0.50 
46 0.049 0.42 

103 0.036 0.47 

45 0.043 0.41 
44 0.047 0.40 
82 0.048 0.41 
48 0.020 0.37 

62 0-023 0.48 
33 0.049 0.60 
91 0-033 - 
57 0.091 0.59 

63 0.018 0.48 
95 0.014 0.51 
100 0.013 0.56 
125 0.016 0.61 

184 - 0.53 
130 - 0.62 
135 0.66 

Average 0.51 
Standard error of mean 0.02 

Standard deviation 0.09 

om2 s - ~  ("C)Z s-1 K' 

- 

TABLE 2. 'Inertial range' constants 

K;, 
0.83 
0.75 
0-70 
0.90 

0.72 
0.72 
0.82 
0.72 

0-79 
0.77 
0.85 
0.83 

0.86 
0.86 
0.99 
0.90 
- 
- 
- 

0.8 1 
0.02 
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FIGURE 9. Normalized temperature spectra. 

700. On the other hand, Lanza & Schwarz (1966)' who as in this study measured 
temperature fluctuations in air, produced universal spectra which agreed a t  high 
wavenumbers but not at  low wavenumbers. 

Temperature dissipation spectra were normalized according to (14) and plotted 
linearly (figure 11). The points lie within a moderately narrow envelope. Tem- 
perature dissipation spectrum 203 (l)D was compared with the temperature dis- 
sipation spectrum presented by Gibson et al. (1970). The log-log plot (figure 12) 
shows discrepancies in the two spectra which are similar to the discrepancies noted 
in the velocity dissipation spectra of these results and of Gibson et al. Even though 
a 'noise' subtraction was made from 203 ( l )D (and the rest of the temperature 
dissipation spectra) the fall-off rate does not approach that of the Gibson et al. 
spectrum. Gibson (private communication) is of the opinion that the rapid fall- 
off in their spectrum is due to the 36 db octave-I filter cut-off used in the analysis 
of the data. 



Temperature and velocity spectra in air 489 

I I I 

1 1 I 1 

- 3  -2 -1 0 

Log,, klks 
FIGURE 10. Comparison of normalized 202 ( 2 )  temperature (A) 

and velocity (0 )  spectra. 

The scalar constant Ki  was estimated from (15) and the one-dimensional in- 
tegral in (12). Based on 16 estimates (table 2), a value of 0.81 with a standard 
error of the mean of 0.02 was obtained. The previous scatter has been com- 
mented on ( $ 2 . 2 ) .  The previous values for the most part have been estimated by 
indirect though none the less valid methods. This evaluation of Ki has been made 
by direct measurement of all quantities which enter into the calculation of it. 

5. Summary 
These results support previous results of velocity spectra but suggest that the 

universal curve may be slightly high at large wavenumbers. The value of the one- 
dimensional constant is only slightly higher than formerly believed in 1966. 

The shape of the one-dimensional temperature spectrum in air beyond the 
- Q region has been clearly illustrated and does not show a ' - 1 ' region. A Prandtl 
number of 0-7 is not a large Prandtl number which means that large Prandtl 
number theory is not applicable to temperature fluctuations in air. The value of 
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FIGURE 11. Normalized temperature (scalar) dissipation spectra. 

FIQURE 12. Comparison of (0) 203 ( l )D and (0) Gibson et al. (1970) 
differentiated temperature (scaler) dissipation spectra. 
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the scalar one-dimensional constant is about 0.8. A clear and concise discussion 
of various values of the scalar constant has been given by Paquin & Pond (1 97 1). 
Clearly a problem exists, and further careful experimental work is needed. 
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